A Sensitive Liquid Chromatography–Tandem Mass Spectrometry Method for the Measurement of Nestorone® in Human Serum

MSACL 2017 Poster Summary: Feng Bai, Vignesh Iyer, Ronald Swerdloff, and Christina Wang Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center

HIGHLIGHTS: Reduce manual sample prep. time

HybridSPE[®] - XTR

INTRODUCTION

- Nestorone® (NES) is a synthetic progestin being developed by Population Council and NICHD for female and male contraception.
- NES does not bind to the androgen or the estrogen receptor and may have less adverse effects than androgenic progestin commonly used for female contraception.
- NES was previously measured in serum by radioimmunoassay that has non specific interference leading to detectable NES levels in men when no NES was administered.
- The objective of this study was to develop and validate a highly sensitive LC MS/MS method for the detection of serum Nestorone levels for research and clinical purposes in men.

Mass spectrometric conditions on API 5000: Optimized mass parameters used positive MRM mode. The selected parent/product ions m/z are 371.4/253.1 for NES and 374.4/253.1 for internal standard (IS) ¹³C₃ Nestorone, respectively.

Liquid chromatographic conditions:

Kinetex C18 column (1.7 μ m,100 mm × 3 mm) with a gradient mobile phase from 45%B to 100%B for 5 minutes (B / A = 100%MeOH / H 2 O with 0.1% formic acid) delivered at 0.6 mL/minute, total run time: 7 minutes

Table 1. Sample Preparation

Protein Precipitation	 Add 25 µL internal standard (IS) into 200 µL of serum samples, calibrators and QC; vortex well Add 750 µL acetonitrile with 1% formic acid and mix well Centrifuge at 14,000 rpm for 3 minutes Transfer supernatant
Condition	 Aspirate and Dispense HybridSPE- XTR tips with 1000 μL acetonitrile
Extraction	• Aspirate/dispense the supernatant 2x with HybridSPE -XTR tips binding interferents to sorbent
Prep for injection	 Dry down the extracted samples Reconstitute with 40% MeOH in 0.1% formic acid H₂O for the analysis

The range of calibration curve: 10 ~ 30,000 pg/mL for Nestorone in human serum samples.

Figure 1. Calibrator/Internal Standard

RESULTS

Nestorone (pg/mL)	Intra-assay pred (n=10)	cision	Inter-assay precision (n=9 days)			Nestorone (pg/mL)	%Accuracy (n=9 days)	%CV
	Mean ± SD	%CV	Mean ± SD	%CV		QC1	99.7	9.6
QC1	27.1 ± 1.1353	4.2	28.3 ± 2.734	9.6		QC2	104.7	2.5
QC2	141.2 ± 12.505	8.9	158.4 ± 3.909	2.5		QC3	102.4	4.8
QC3	434.7 ± 12.774	3.2	457.0 ± 21.96	4.8		QC4	98.0	2.3
QC4	1509.0 ± 65.44	4.3	1581.6 ± 40.35	2.3		QC5	93.6	3.1
QC5	7546 ± 304.43	4.0	7405 ± 230.39	3.1		QC6	100.8	5.7
QC6	24090 ± 371.20	1.8	24611 ± 1393	5.7				

Analyte (100 pg/mL)	% Matrix Effect							
	Serum 1	Serum 2	Serum 3	Serum 4	Serum 5	Serum 6	Average	
Nestorone	66.1	85.2	72.9	78.9	82.9	69.9	76.0	
¹³ C ₃ -NES	51.3	68.9	67.2	80.4	78.4	58.8	64.4	

Nestorone	LLOQ (n=6) Signal/Noise									
Serum	1	2	3	4	5	6	Х	SD	%CV	% Accuracy
10 pg/mL	10.2	10.9	13.1	13.7	10.0	13.2	11.85	1.6646	14.0	-
Measured	8.72	9.05	9.93	9.88	9.74	10.1	9.57	0.5529	5.8	95.7

CONCLUSIONS

A sensitive LC MS/MS assay for human serum Nestorone® was developed an validated which can be applied to clinical and research studies.

ACKNOWLEDGEMENT

The work done by Los Angeles Biomedical Reseach Institute was supported by NICHD CCTN Contract HHSN275201300024I TO HHSN27500005. DPX Technologies provided HybridSPE XTR Tips for method development.

CUSTOM WORKFLOW SOLUTIONS

Our team of application scientists supports custom method development to help you seamlessly integrate our products into your work-flow.

info@dpxlabs.com

dpxtechnologies.com